# Tentamen Numerical Mathematics 2 <br> January 25, 2017 

Duration: 3 hours.
In front of the questions one finds the weights used to determine the final mark.

## Problem 1

a. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]
$$

for the problem $A x=b$, with $\epsilon=10^{-10}$. For this problem we want to find the least-squares solution.
(i) [3] Show that it is not possible to solve this problem via the normal equations on a standard PC.
(ii) [5] Create a QR factorization of $A$ using Housholder transformations. How is this QR factorization used to find the least squares solution and does this lead to a solvable system?
(iii) [4] Compute the singular values of $A$.
b. Suppose we make an LU factorization of a matrix $A$ of order $n$ where the matrix $L$ has ones on its diagonal and moreover $L$ is diagonal dominant by rows.
(i) [3] Let $e_{1}$ be the vector $[1,0,0, \cdots, 0]^{T}$. Show that all the entries the solution $y$ of $L y=e_{1}$, are less than or equal to 1 in magnitude. (Hint, prove by induction.)
(ii) [3] Show that every entry of the inverse of $L$ is less than or equal to one.
(iii) [1] Show that $\|U\|_{\infty} \leq n\|A\|_{\infty}$
(iv) [1] Solving $A x=b$ with the above LU factorization one can show that we in fact find a solution $\hat{x}$ which is the exact solution of a system $(A+\delta A) \hat{x}=b$ where $|\delta A| \leq n u(3|A|+5|L \| U|)+O\left(u^{2}\right)$. Show that $\|\delta A\|_{\infty} \leq n u\left(3\|A\|_{\infty}+\right.$ $\left.10\|U\|_{\infty}\right)+O\left(u^{2}\right)$.
(v) [1] Bound $\|\delta A\|_{\infty}$ in $\|A\|_{\infty}$.
(vi) [2] How is this expression used to bound the relative error in $x$ ?

## Problem 2

a. Consider the $n \times n, n$ even, matrix

$$
A(\epsilon)=\left[\begin{array}{cccc}
1 & 1 & & \\
& \ddots & \ddots & \\
& & 1 & 1 \\
\epsilon & & & 1
\end{array}\right]
$$

(i) [3] Show that the characteristic equation of $A(\epsilon)$ is given by $(\lambda-1)^{n}-\epsilon=0$.
(ii) [4] Consider the problem $(\lambda-1)^{n}=d$. Give the absolute condition number of this problem for $d \neq 0$. What happens to this condition number if $d$ tends to zero?

In the figure right the computed eigenvalues of $Q^{T} A(0) Q$, where $Q$ is a random orthogonal matrix, are depicted for $n=10$. Relate the results
(iii) [3] to the solution of the characteristic equation of part (i) where $\epsilon$ is the unit round.

b. The QR-method to find all eigenvalues of a matrix $A$ is defined by the following iteration

$$
\begin{aligned}
A_{0} & =A \\
Q_{i} R_{i} & =A_{i}, \text { for } i=0,1,2,3, \ldots \\
A_{i+1} & =R_{i} Q_{i}
\end{aligned}
$$

(i) [2] Show that $A_{i}$ is similar to $A$ for all $i$.
(ii) [4] Let $\hat{Q}_{i-1} \hat{R}_{i-1}=A^{i}$ (indeed $A$ to the power $i$ ). Show that $A_{i}=\left(\hat{Q}_{i-1}\right)^{T} A \hat{Q}_{i-1}$. (Hint, prove by induction).
(iii) [4] Assume furthermore that $A$ is symmetric and tridiagonal. Show that $A_{i}$ is tridiagonal for all $i$.
c. [4] Show the existence of the generalized Schur form

$$
\begin{aligned}
& A Z=Y S \\
& B Z=Y T
\end{aligned}
$$

where both $Z$ and $Y$ are orthogonal and $S, T$ upper triangular. You may assume that $A$ and $B$ are non-singular. You may start from the standard Schur form of $B^{-1} A$. How is the generalized Schur form used to solve the generalized eigenvalue problem $A x=\lambda B x$ ?

## Problem 3

Consider the basis $\left\{1, x, x^{2}, x^{3}, \cdots,\right\}$ on the interval $[0,1]$. Moreover on this interval an inner product is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$.
a. [4] Derive the first three orthogonal basis functions (so up to the quadratic function).
b. [2] Show that the zeros of the quadratic basis function are $\frac{1}{2} \pm \frac{1}{6} \sqrt{3}$.
c. [4] Show that for the original (so the one on top of this question) basis, using $n$ terms, the least squares approximates of a function $f$ on the subspace is found by solving the coefficients from the linear system $A c=b$ with $a_{i j}=1 /(i+j+1)$ and $b_{i}=\left(f, x^{i}\right)$.
d. [3] Suppose we now use the orthogonal basis $\left\{\psi_{0}(x), \psi_{1}(x), \cdots, \psi_{n}(x)\right\}$. To which linear system does the least squares minimization lead here?
e. [3] The minimizations in both part b and c lead to the same polynomial approximation. Why is this the case?
f. [2] Numerically, using the orthogonal polynomials as a basis is favored. Why?
g. [3] A Gauss method for the integration of

$$
\frac{d y}{d t}=f(t, y)
$$

is given by the Butcher tableau


Explain why in the first column one finds the zeros of the polynomial as given in part b. What will be the order of accuracy of this method.
h. [2] Let $f(t, y)=y(y+1)$. Which system has to be solved in each time step using the Gauss method from the previous part?

Son 1
(i) normal equation

13

$$
\begin{gathered}
A x=b \rightarrow A^{5} A x=A^{\top} b \\
A^{\top} A=\left[\begin{array}{lll}
1 & \varepsilon & 0 \\
1 & 0 & \varepsilon
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 8
\end{array}\right]=\left[\begin{array}{ll}
1+\varepsilon^{2} & 1 \\
1 & 1+\varepsilon^{2}
\end{array}\right] \cong\left[\begin{array}{l}
10^{-16} \\
1 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& \hat{H}_{1}[\varepsilon]=\left[\begin{array}{c}
1+\varepsilon^{2} \\
0
\end{array}\right] \\
& \mid \hat{H}_{1}=\left(1-2 \omega \omega^{\top}\right) \\
& \hat{\omega}=\left[\begin{array}{l}
1 \\
\varepsilon
\end{array}\right] \pm\left[\begin{array}{c}
1+\varepsilon^{2} \\
0
\end{array}\right]
\end{aligned}
$$

choose +

3

$$
\begin{aligned}
& \hat{H}_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathcal{R}_{2}:\left[\begin{array}{c}
-1 \\
-\varepsilon
\end{array}\right] \\
& {\left[M_{1}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & -8 \\
0 & 2
\end{array}\right]} \\
& <\hat{H}_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \pm\left[\begin{array}{l}
E-1 \\
0
\end{array} \quad \omega=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \pm\left[\begin{array}{c}
\sqrt{2} \\
0
\end{array}\right]\right. \\
& \operatorname{kes}-\mathrm{W}=[-1-\sqrt{2}] \\
& {\left[\begin{array}{ll}
\hat{Q}_{1} & H_{2}
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
0 & -1 \\
0 & =
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & -12 \\
0 & 0
\end{array}\right]^{2}} \\
& H_{2} H_{4} A=\left[\begin{array}{cc}
-1 & 1 \\
0 & c \sqrt{2} \\
0 & 0
\end{array}\right] \quad, \begin{array}{cc}
A x=b & Z
\end{array} \\
& \begin{array}{c}
{\left[\begin{array}{cc}
-1 & -1 \\
0 & e_{2} \sqrt{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
\rightarrow x_{1}, x_{2}
\end{array}
\end{aligned}
$$

$$
4 y=e_{1}
$$

f.n 1
$e_{n}$

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=0-l_{21}=-l_{21} \rightarrow \lg _{0}\left|=\left|l_{21}\right| \leq 1\right. \\
& y_{i}=0-\sum_{j=1}^{i=} l_{i j} y_{j}
\end{aligned}
$$

suppore $\left|y_{j}\right| \leqslant 1$ for $y_{i} j=1, \ldots$, ios NE thes is true for i=2
thon

$$
H_{i}\left|\leqslant \sum_{j=1}^{i-1}\right| l_{i j}\left|y_{j}\right| \leq\left.\sum_{j=1}^{i}\right|_{i j} \mid=1
$$

it the mevers of $L$ fllows Sues Lhory $L y=I$. We suloed detrady the first colurse. Cansuben the it the colrexen

$$
y=e_{i}
$$

$$
\frac{1}{1}=\left[\frac{2}{e_{0}}\right]
$$

3
i also shacey do mont
so $y=\frac{0}{0}$ all koothom 1 is magn.

$$
\left.\rightarrow A_{j}^{1} \mid L^{-1}\right)_{i j} \mid \leq 1
$$

$i$ ie since $l U=A$ we Rusue $U=L^{-1} A$

1 $\operatorname{since}\|A\|_{\varphi}=$ neat $\sum_{i=1}^{n}\left|x_{i j}\right|$

$$
\rightarrow\left\|L^{n}\right\| \leq n
$$

d. $\|\delta A\| \leq \|$
triegegly

$$
\begin{equation*}
s n u\left(s\|A\|_{\infty} s\|L\|\|u\| \infty\right)+O u^{2} \tag{If}
\end{equation*}
$$

21 dicy domen with : an diegual so

$$
\begin{gathered}
\| L H_{0} \leq 2 \\
H H_{\infty} \leq n u\left(3 H_{\infty}+10\left(U H_{\infty}\right)+O\left(u^{2}\right)\right.
\end{gathered}
$$

$v$ flos 3 we hawe
v> $\quad\|8+\| \leqslant$ nu $(3+2+3+10 n)\|A\|-Q\left(r^{2}\right)$
VL \& It holda thot

$$
\begin{aligned}
& \text { (1) } \frac{\|\Delta x\|}{\|\times\|} \leq \frac{k(A)}{1-K G H \frac{U A H}{\|A\|}}\left(\frac{\| A M}{\| A B}+\frac{1 b 1}{1 b 1}\right)
\end{aligned}
$$

now we fool

$$
\text { (1) } \frac{\|a x\|}{\|x\|} \leq k(a) a_{,} u+o\left(u^{2}\right)
$$

2a(1) thow that the ehara ofevitic egration of the veriefrex

$$
A(A)=\left[\begin{array}{lll}
1 & V & \\
& & \\
& & 1
\end{array}\right]
$$

is given by $(\lambda-1)^{n}-\varepsilon=0$
3 Aurwer
We the laof lime to eovoluate the clalerminant of A-NI

$$
-\varepsilon 1+(1-\lambda)^{n}=0 \rightarrow(\lambda-1)^{n}=\varepsilon
$$

- is Considar the problem $(\lambda-1)^{n}=d$. Give the elefinition of tha velative cancliten buem hoe for this problen and (express it in d, n, add

4

4

$$
\begin{aligned}
& \Delta d=\sqrt[n]{d+\Delta d-\sqrt{d}=}=\sqrt[n]{d \sqrt{1+\Delta d^{r}}-1=\sqrt[n]{d}\left[\left(e^{\Delta d / d}\right]^{1 / a}-1\right]} \\
& =\sqrt[n]{d}\left(a^{a d d}-1\right)=\sqrt{d} \frac{\Delta d}{n d}
\end{aligned}
$$

$$
(1)^{d} A=\sqrt[n]{a d}
$$

$$
\begin{aligned}
& \text { Kuswes } \\
& \operatorname{mex}_{a} \frac{1 \Delta d 1}{1 \Delta \| \Delta d \mid} \\
& K_{a b s}=\max _{\Delta d \neq 0} \frac{\Delta \lambda}{\Delta d} \\
& \left\{\begin{array}{rlr}
(\lambda+\Delta \lambda-1)^{n}=d+a d & \rightarrow & \lambda+\Delta d-1=\sqrt[V]{d+\Delta d} \\
(\lambda-1)^{n}=d & & \rightarrow \lambda+1=\sqrt{d}
\end{array}\right.
\end{aligned}
$$

vervole $2 b$

$$
\begin{aligned}
& \text { Neb, cand mentren } \\
& \max _{\operatorname{abs}} \frac{|\Delta d|}{A \mid(a d \mid} \int \begin{array}{l}
\frac{\sqrt[n]{d}}{n d}(\sqrt{n}) \\
\frac{\sqrt[n]{\Delta d}}{\Delta d}=\Delta d^{\frac{1}{n}-1}
\end{array}
\end{aligned}
$$

ra(iii) In Matlab the eegervalues of Alot ave compated and we sblais the if results in the forlocoving poloto.
$\square$
3 Explai thex resuts.
Answe
Thir com be expplased fran

$$
(\lambda-1)^{n}=\varepsilon
$$

Hene $\varepsilon$ os of orden of un o to -16

$$
\begin{aligned}
& A-1)^{10} 0=10^{-16} \\
& 2-1=10^{-1,} \cdot e^{i 2 m h / 0}
\end{aligned}
$$

This in about whet we dreve

2t Thé OS $R$ wrethod farto find the eigenvalua of maticx $A$ is atpecel by the pollow of levation.

$$
\begin{aligned}
& A^{(i)}=A^{(i)} \\
& Q^{(i)} \cdot R^{(i)}=A^{(i)} \\
& \left.A^{(+1)}=R^{(i)} Q^{(i)}\right] \quad i=o_{1}, 1, \ldots
\end{aligned}
$$

i Show the $A^{\text {és }}$ is nillur to A por all $i$
Answer
$2 \quad A^{(i+n)}=Q^{(i)^{(i n}} A^{(i n} Q^{(i)}$
Row $A^{(1+1)}$ similare bo Ati se suitarto

$$
x^{\text {cos }}=x
$$

il Let $Y_{i=1} A^{i}$ and $Q_{i-1} n_{i=-}=Y_{i=1}$ Whow that $A^{(a)}=Q_{i+1}^{T} A Q_{i n}$.
Answer. By inductin

$$
\begin{array}{ll}
M_{0}=A & a_{0} R_{0}=Y_{0}=A \\
& A_{0}^{(1)}=A_{0}^{T o s} O_{0} \quad O R
\end{array}
$$

Aesume it is true for $i$. Show that is true for it it

$$
A^{i+1}=0^{\left(e^{T}\right.} A^{i+1} Q^{i+}=0^{i+} Q_{i-1}^{T} A Q_{i-8}^{x}
$$

now

$$
=A Y_{i+1} R_{i=1}^{B}\left(R^{-1}=y R^{-1}\right.
$$

iii If: A in anthicleapanal and spencion Matrix, then A Alt En Drdigemal

Morner



Show thoot thaw axitix gewserlich shet foked for

$$
\begin{aligned}
& A 2=Y 5 \\
& B 2=Y T
\end{aligned}
$$

where buth 2 ad yanc ortheyumt
 s. h momer

Anower

$$
B^{-1} A z=B^{-1} y s=T^{-1} S
$$

轮 So 2 w the orthanom thatrix whth



2 solve $A x=\lambda B x \Leftrightarrow T^{-1} S y=\lambda y$ using $Q R$ method



Prublom 3
A Whepatre folpromet Anthtiteval [0, I] we con shen wish $\left\{1, x, x^{2}\right.$


$$
\begin{aligned}
& \text { a Derive the orthogenal busis forstrans }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\alpha+\psi_{D}\right)-\alpha\left(\psi_{0}, \psi_{0}=0\right. \\
& \infty=\frac{(\alpha)}{(\alpha, y)}=\frac{(\alpha, 1)}{(1,0}=\frac{\alpha \Delta)}{1} \\
& W_{1}=\frac{a}{4}=x-\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\hat{q}_{2}, y_{0}\right)=0 \\
& \text { (4, } \left.\psi_{1}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(火^{2}, \frac{1}{4}\right)-\beta(\psi, \psi)=\right)^{0} \\
& \frac{1}{y}-\frac{1}{8} \frac{8}{8} x^{2}-x+\frac{3}{4} \\
& \psi_{2}=x^{2}-\frac{1}{3}-\left(x-\frac{1}{2}\right)=x^{2}-x+\frac{1}{6}
\end{aligned}
$$

$k$
b show that the revos of the quaducter polynomical we $\frac{t+\sqrt{D} T}{2}=\frac{1}{2}+\frac{1}{2}$.

虞C



$$
A \varepsilon=k
$$

Where $a_{i j}=\frac{1}{i+j+1}$ and $b_{i}=\left(9, x^{i}\right)$

$$
\begin{gathered}
\min _{r_{i}}\left\|f-\sum_{j=0}^{n} \cos ^{i}\right\|_{2}^{2}=1 \\
\frac{\partial}{\partial c_{i}} \| V^{2}=0 \quad i=a_{1}, n \\
\frac{\partial}{\partial c_{i}} l^{n} \quad l_{2}=0
\end{gathered}
$$

84

$$
\begin{aligned}
& \left(x_{i}^{i}\right)+\left({ }^{2} x^{i}\right)=0 \ldots . . . \\
& \left(x_{i}^{i} f\right)-\sum_{j=0}^{n}\left(x^{i} x^{j}\right) c_{j}=-\frac{2}{i=0, n} \\
& \sum_{j=0}^{n} a_{i j} c_{j}=b_{i} \\
& \text { Where } a_{i j}=\left(x^{i} \times 5\right) \int^{1} x^{i n j} d x=\frac{1}{i+j+1} \\
& b_{i}\left(x^{i}, f r\left(f x^{i}\right)\right. \text { 出 }
\end{aligned}
$$

Pappore we use the bases $\left\{\psi_{0} \ldots \varphi_{n}\right\}$ ．
Lecest separes mí also leads to a hien syte here whid here ghidn we
＊In the alove $x^{i}$ a theplesed by $\varphi$ ．
43 and Ix $^{1}$ by $\Psi_{j}$
We now $\operatorname{a}_{i j} \mathrm{Y}^{2}\left(\psi_{i}: \psi_{j}\right)=\left\{\begin{array}{cc}\left(\psi_{i}, \psi_{i}\right) & \text { Por } j=i \\ 0 & \text { por } j \neq i\end{array}\right.$

$$
b_{i}=\left(P, \psi_{i}\right)
$$

e The minimisations is both $b$ sand $c$ lead to a polqumarial a proxacialen 1. Why care these poly hom rids equal?

* 3 Iu the LS method we wre minimicin the destance go ue Anace
Shice the better is oly a oxthergmal hass thot tsors itwee the dewer space, we fave.


If Numerieutt., usiz, the orthogomal pelyemerels is to be, forpovered. why.

Recamse the the tonerace cove the maturx getagrichy moty singalor.
12 while the lattan is not. This mesern that the coeffrails are much loses detamined.
y The Gauss method for the integration of

$$
\frac{d y}{d t}=f(t, y)
$$

So give by the Butcher tableau

$$
\frac{1}{164}
$$


(1) + what is the arden of accuracy? $\rightarrow 2 n+1, n=2 \rightarrow 5$

Austerer compound caress: $2 n, n=2 \rightarrow 4$
 $t_{n} \int \frac{d u}{d t} d t=\int_{t_{n}}^{t_{n+1}}\left(t_{t_{m p}} \cdot g(t)\right) d t$
3

$$
y\left(t_{n+1}\right)-y\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f\left(t_{n} y(t)\right) d t
$$

* (2) The integral is approximated by the Gees hegudre ingleyral Ne x rule

$$
\int_{t_{n}}^{t_{n+1}} f\left(t, y(t) d t=\int_{t_{n}}^{t_{n}} f\left(t_{0}, y\left(t_{0}\right)\right) l_{0}(t)\right.
$$

to $b_{1}, b_{2}$
Where to and to are the reno's of the hogenche polynomial an given by $e_{1}$ adc The cuifferits $b_{0}$, $b_{2}$ follow prom $\int_{t=1}^{u_{n}} e_{i}(t) d t$ and $\int_{n}^{b_{n}} e_{0}(t) d t$
From the symandivy of the zeros of to and ti corf the middle of the serval we will lave that $l_{i}\left(l_{a+1}-5\right)=l_{0}\left(t_{n}+s\right)$ Hence the in betel will be the name and ob le $b_{1}+b_{2}=1 \Rightarrow b_{1}=b_{2}=\frac{1}{2}$
h Let $f(, y)=y^{2}$ which sytum hod to he sobered $w$ couch ${ }^{\text {b }}$ mane top

2

$$
\begin{aligned}
& k_{1}=\left(u_{n}+\frac{1}{4} h k_{1}+\frac{1}{y}-\frac{1}{8} k_{2}\right)\left(1+u_{n}+\frac{1}{p} \cdots\right) \\
& k_{2}=\left(u_{n}+\left(\frac{1}{4}+\frac{1}{b} \sqrt{3}\right) k_{1}+\frac{1}{b} b k_{2}\right)\left(1+u_{n} \cdots \cdots\right)
\end{aligned}
$$

